A novel approach for detecting HMDSO poisoning of metal oxide gas sensors and improving their stability by temperature cycled operation
نویسنده
چکیده
In this paper we study the effect of hexamethyldisiloxane (HMDSO) vapor on an SnO2-based gas sensor (GGS 1330, UST Umweltsensortechnik GmbH, Geschwenda, Germany) in a temperature cycled operation (TCO). We show that HMDSO poisoning can be quantified at early stages (85 to 340 ppm×min) with a resolution of ±85 ppm×min using TCO. This novel approach for sensor self-monitoring provides a simple method for early detection of HMDSO poisoning. It is thereby possible to detect poisoning before the sensor function is strongly impaired. In this paper we show that by using an appropriate normalization of the sensor data, the stability of gas discrimination by linear discriminant analysis (LDA) can be improved, which in turn facilitates a more accurate determination of the poisoning state by a hierarchical LDA discrimination. For a specific temperature cycle and feature extraction approach, we show that identification of ethanol and carbon monoxide is still possible after poisoning with 900 ppm×min HMDSO, i.e. a HMDSO poisoning dose more than twice as high as required by DIN EN 50194-1.
منابع مشابه
Effects of Surface Modification on the Recovery Time and Stability of Nanostructured Tin Oxide Thick Films Gas Sensors
Along with high sensitivity in detecting gas, the response and recovery times of semiconductor gas sensors are of considerable importance for real life applications. In most cases, the recovery time is more than the response time. At the same time, water vapor present in the ambient, is chemisorbed on the tin oxide, SnO2 surface and the water molecules dissociate into hydroxyl species, which ac...
متن کاملSelectivity Enhancement of Gas Sensitive Field Effect Transistors by Dynamic Operation
Gas sensitive field effect transistors based on silicon carbide, SiC-FETs, have been applied to various applications mainly in the area of exhaust and combustion monitoring. So far, these sensors have normally been operated at constant temperatures and adaptations to specific applications have been done by material and transducer platform optimization. In this thesis, the methodology of dynamic...
متن کاملZinc oxide nano-crystals assisted for carbon dioxide gas sensing; prepared by solvothermal and sonochemical methods
ZnO nanostructures of different methods and sizes were grown in a controlled manner using a simple hydrothermal and sonochemical technique. Controlling the content of concentration and temperature of the reaction mixture, spherical nanoparticles ZnO structures could be synthesized at temperatures 100-150 °C with excellent reproducibility in solvothermal and at different power and time in sonoch...
متن کاملOne-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues
In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which w...
متن کاملImproving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique
Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors...
متن کامل